Fracture size effect in ultrananocrystalline diamond: Applicability of Weibull theory
نویسندگان
چکیده
An analysis of size effects and doping on the strength of ultrananocrystalline diamond (UNCD) thin films is presented. The doping was achieved by the addition of nitrogen gas to the Ar/CH4 microwave plasma. The strength data, obtained by means of the membrane deflection experiment (MDE) were interpreted using Weibull statistics. The validity and predictive capability of the theory were examined in conjunction with detailed fractographic and transmission electron microscopy microstructural analysis. The Weibull parameters were estimated nonlinear regression based on 480 tests when the specimen volume varied from 500 to 16,000 m. Both undoped and doped UNCD films exhibited a decrease in strength with an increase in specimen size. A significant drop in strength was measured when the films were doped with nitrogen. Such a drop was almost independent of the percentage of doping. The results also showed that one can predict the fracture strength of a component possessing any arbitrary volume to within ±3%. Moreover, the failure mode of UNCD was found to be volume controlled. We also report changes in Young’s modulus as a function of doping for n-doped UNCD thin films.
منابع مشابه
Fracture Size Effect in Ultrananocrystalline Diamond – Weibull Theory Applicabiility
Strength characterization and analysis of fracture size effect in ultrananocrystalline diamond (UNCD) thin films are presented. In this work, we report the changes in mechanical properties of UNCD by the addition of nitrogen gas to the Ar/CH4 microwave plasma. Both undoped and doped UNCD films show a decrease in fracture strength with an increase in specimen size. The strength data, obtained by...
متن کاملFracture strength of ultrananocrystalline diamond thin films—identification of Weibull parameters
The fracture strength of ultrananocrystalline diamond ~UNCD! has been investigated using tensile testing of freestanding submicron films. Specifically, the fracture strength of UNCD membranes, grown by microwave plasma chemical vapor deposition ~MPCVD!, was measured using the membrane deflection experiment developed by Espinosa and co-workers. The data show that fracture strength follows a Weib...
متن کاملA Comparison of Mechanical Properties of Three MEMS Materials - Silicon Carbide, Ultrananocrystalline Diamond, and Hydrogen-Free Tetrahedral Amorphous Carbon (Ta-C)
Many MEMS devices are based on polysilicon because of the current availability of surface micromachining technology. However, polysilicon is not the best choice for devices where extensive sliding and/or thermal fields are applied due to its chemical, mechanical and tribological properties. In this work, we investigated the mechanical properties of three new materials for MEMS/NEMS devices: sil...
متن کاملThe Vibrational Properties of Ultrananocrystalline Diamond Based on Molecular dynamics Simulations
We investigate the vibrational properties of ultrananocrystalline diamond (UNCD) using molecular dynamics simulations. We compare the vibrational spectra of two UNCD models of average grain size 2 and 4 nm with single crystal diamond and an isolated nanodiamond (ND) particle. The vibrational spectra of the ND particle and UNCD models exhibit the effect of phonon confinement as well as undercoor...
متن کاملMechanical Properties of Ultrananocrystalline Diamond Thin Films Relevant to MEMS/NEMS Devices
The mechanical properties of ultrananocrystalline diamond (UNCD) thin films were measured using microcantilever deflection and membrane deflection techniques. Bending tests on several free-standing UNCD cantilevers, 0.5 μm thick, 20 μm wide and 80 μm long, yielded elastic modulus values of 916–959 GPa. The tests showed good reproducibility by repeated testing on the same cantilever and by testi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007